4.6 Article

Prevention of Staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP

Journal

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
Volume -, Issue 437, Pages 48-54

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.blo.0000175889.82865.67

Keywords

-

Funding

  1. NIAID NIH HHS [R21 AI054858-01] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM60052] Funding Source: Medline

Ask authors/readers for more resources

Staphylococcus aureus and Staphylococcus epidermidis associated with implantable medical devices, are often difficult to treat with conventional antimicrobials. Formation of a biofilm and subsequent production of toxins are two distinct mechanisms considered important in foreign body infections. Staphylococcal virulence is caused by a complex regulatory process, which involves cell-to-cell communication through the release and response to chemical signals in a process known as quorum sensing. We explored the possibility of preventing infections by interfering with biofilm formation and toxin production using the quorum sensing inhibitor ribonucleic-acid-III-inhibiting peptide. In our studies ribonucleic-acid-III-inhibiting peptide prevented graft-associated infections caused by all species of staphylococci tested so far, including methicillin resistant S. aureus and S. epidermidis. Ribonucleic-acid-III-inhibiting peptide also enhances the effects of antibiotics and cationic peptides in the clearance of normally recalcitrant biofilm infections. Ribonucleic-acid-III-inhibiting peptide is nontoxic, highly stable, and no resistant strains have been found so far, suggesting that ribonucleic-acid-III-inhibiting peptide may be used to coat medical devices or used systemically to prevent infections. When the target of ribonucleic-acid-III activating protein activity is disrupted, biofilm formation is reduced under flow and static conditions and genes important for toxin production or biofilm formation are down-regulated. These in vitro data help explain why ribonucleic-acid-III-inhibiting peptide seems to be effective in preventing staphylococcal infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available