4.3 Article

Stimulation characteristics that determine arteriolar dilation in skeletal muscle

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00571.2004

Keywords

contraction frequency; stimulus frequency; train duration; muscle contraction; hyperemia

Categories

Ask authors/readers for more resources

To determine the skeletal muscle stimulation parameters that are most important in establishing vasodilation in the microvasculature, I tested whether arteriolar diameter during 2 min of repetitive, short-duration, tetanic skeletal muscle contractions increased with changes in stimulus frequency, stimulation train duration, and contraction frequency. To test this, the diameter of transverse arterioles approximately perpendicular to small bundles of cremaster muscle fibers in situ of anesthetized Golden Syrian hamsters was used as a bioassay system. Arteriolar diameter was measured before and during different stimulation patterns that consisted of a contraction frequency [ 6, 12, or 24 contractions per minute (cpm)], a stimulation train duration ( 250, 500, or 750 ms) and a stimulus frequency ( 4, 8, 10, 15, 20, 30, 40, 60, and 80 Hz). The magnitude of the dilation significantly increased with stimulus frequency but not in a simple linear manner. The average rate of increase was 0.32 +/- 0.02 mu m/Hz from 4 to 20 Hz and 0.09 +/- 0.02 mu m/Hz from 30 to 80 Hz. The magnitude of the dilation increased significantly with the contraction frequency where the dilation at 6 cpm was significantly smaller than the dilation at 24 cpm across all stimulus frequencies. Changing the train duration from 250 to 750 ms did not significantly affect the magnitude of the dilation. These observations suggest that stimulation parameters are important in determining the magnitude of the microvascular dilation and that the magnitude of the dilation was dependent on both the contraction frequency and stimulus frequency but was independent of train duration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available