4.6 Article

Survival of Campylobacter jejuni under Conditions of Atmospheric Oxygen Tension with the Support of Pseudomonas spp.

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 76, Issue 17, Pages 5911-5917

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01532-10

Keywords

-

Funding

  1. European research project PoultryFlorGut [FOOD-CT-2005-007076]

Ask authors/readers for more resources

Campylobacter jejuni is a major food-borne pathogen. Despite causing enteritis in humans, it is a well-adapted intestinal microorganism in animals, hardly ever generating disease symptoms. Nevertheless, as a true microaerophilic microorganism it is still puzzling how Campylobacter cells can survive on chicken meat, the main source of human infection. In this study, we demonstrate that C. jejuni is able to withstand conditions of atmospheric oxygen tension when cocultured with Pseudomonas species, major food-spoiling bacteria that are frequently found on chicken meat in rather high numbers. Using an in vitro survival assay, interactions of 145 C. jejuni wild-type strains and field isolates from chicken meat, broiler feces, and human clinical samples with type strains and food isolates of Pseudomonas spp., Proteus mirabilis, Citrobacter freundii, Micrococcus luteus, and Enterococcus faecalis were studied. When inoculated alone or in coculture with Proteus mirabilis, Citrobacter freundii, Micrococcus luteus, or Enterococcus faecalis type strains, Campylobacter cells were able to survive ambient oxygen levels for no more than 18 h. In contrast, Campylobacter bacteria inoculated with type strains or wild-type isolates of Pseudomonas showed a prolonged aerobic survival of up to > 48 h. This microbial commensalism was diverse in C. jejuni isolates from different sources; isolates from chicken meat and humans in coculture with Pseudomonas putida were able to use this survival support better than fecal isolates from broilers. Scanning electron microscopy revealed the development of fiberlike structures braiding P. putida and C. jejuni cells. Hence, it seems that microaerophilic C. jejuni is able to survive ambient atmospheric oxygen tension by metabolic commensalism with Pseudomonas spp. This bacterium-bacterium interaction might set the basis for survival of C. jejuni on chicken meat and thus be the prerequisite step in the pathway toward human infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available