4.6 Article

An Old Yellow Enzyme Gene Controls the Branch Point between Aspergillus fumigatus and Claviceps purpurea Ergot Alkaloid Pathways

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 76, Issue 12, Pages 3898-3903

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02914-09

Keywords

-

Funding

  1. USDA National Institute of Food and Agriculture [2008-35318-04549]

Ask authors/readers for more resources

Ergot fungi in the genus Claviceps and several related fungal groups in the family Clavicipitaceae produce toxic ergot alkaloids. These fungi produce a variety of ergot alkaloids, including clavines as well as lysergic acid derivatives. Ergot alkaloids are also produced by the distantly related, opportunistic human pathogen Aspergillus fumigatus. However, this fungus produces festuclavine and fumigaclavines A, B, and C, which collectively differ from clavines of clavicipitaceous fungi in saturation of the last assembled of four rings in the ergoline ring structure. The two lineages are hypothesized to share early steps of the ergot alkaloid pathway before diverging at some point after the synthesis of the tricyclic intermediate chanoclavine-I. Disruption of easA, a gene predicted to encode a flavin-dependent oxidoreductase of the old yellow enzyme class, in A. fumigatus led to accumulation of chanoclavine-I and chanoclavine-I-aldehyde. Complementation of the A. fumigatus easA mutant with a wild-type allele from the same fungus restored the wild-type profile of ergot alkaloids. These data demonstrate that the product of A. fumigatus easA is required for incorporation of chanoclavine-I-aldehyde into more-complex ergot alkaloids, presumably by reducing the double bond conjugated to the aldehyde group, thus facilitating ring closure. Augmentation of the A. fumigatus easA mutant with a homologue of easA from Claviceps purpurea resulted in accumulation of ergot alkaloids typical of clavicipitaceous fungi (agroclavine, setoclavine, and its diastereoisomer isosetoclavine). These data indicate that functional differences in the easA-encoded old yellow enzymes of A. fumigatus and C. purpurea result in divergence of their respective ergot alkaloid pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available