4.6 Article

Quantification of the Emetic Toxin Cereulide in Food Products by Liquid Chromatography-Mass Spectrometry Using Synthetic Cereulide as a Standard

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 76, Issue 22, Pages 7466-7472

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01659-10

Keywords

-

Funding

  1. Nestle Research Centre, Lausanne, Switzerland

Ask authors/readers for more resources

Bacillus cereus produces the emetic toxin cereulide, a cyclic dodecadepsipeptide that can act as a K(+) ionophore, dissipating the transmembrane potential in mitochondria of eukaryotic cells. Because pure cereulide has not been commercially available, cereulide content in food samples has been expressed in valinomycin equivalents, a highly similar cyclic potassium ionophore that is commercially available. This research tested the biological activity of synthetic cereulide and validated its use as a standard in the quantification of cereulide contents in food samples. The synthesis route consists of 10 steps that result in a high yield of synthetic cereulide that showed biological activity in the HEp-2 cell assay and the boar sperm motility assay. The activity is different in both methods, which may be attributed to differences in K(+) content of the test media used. Using cereulide or valinomycin as a standard to quantify cereulide based on liquid chromatography-mass spectrometry (LC-MS), the concentration determined with cereulide as a standard was on average 89.9% of the concentration determined using valinomycin as a standard. The recovery experiments using cereulide-spiked food products and acetonitrile as extraction solute showed that the LC-MS method with cereulide as a standard is a reliable and accurate method to quantify cereulide in food, because the recovery rate was close to 100% over a wide concentration range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available