4.6 Review

Quantum kinetic theory of a Bose-Einstein gas confined in a lattice

Journal

PHYSICAL REVIEW A
Volume 72, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.023604

Keywords

-

Ask authors/readers for more resources

We extend our earlier work on the nonequilibrium dynamics of a Bose-Einstein condensate initially loaded into a one-dimensional optical lattice. From the two-particle-irreducible (2PI) closed-time-path (CTP) effective action for the Bose-Hubbard Hamiltonian we derive causal equations of motion that treat mean-field effects and quantum fluctuations on an equal footing. We demonstrate that these equations reproduce well-known limits when simplifying approximations are introduced. For example, when the system dynamics admits two-time separation, we obtain the Kadanoff-Baym equations of quantum kinetic theory, and in the weakly interacting limit, we show that the local equilibrium solutions of our equations reproduce the second-order corrections to the self-energy of the type originally derived by Beliaev. The derivation of quantum kinetic equations from the 2PI-CTP effective action not only checks the viability of the formalism but also shows it to be a tractable framework for going beyond standard Boltzmann equations of motion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available