4.4 Article

A mathematical model for a new mechanism of phenotypic variation in malaria

Journal

PARASITOLOGY
Volume 131, Issue -, Pages 151-159

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0031182005007481

Keywords

Plasmodium yoelii; host heterogeneity; immune evasion; mathematical model

Categories

Ask authors/readers for more resources

The Py235 merozoite rhoptry protein of the rodent malaria agent Plasmodium (yoelii) yoeli is encoded by the Py235 multigene family whose members are transcribed during the parasite's asexual life-cycle in a fashion where single schizonts subsequently give rise to sets of merozoites containing distinct Py235 transcripts. Homologues of Py235 are found in other malaria species, and antibodies to both Py235 and P. falciparum homologues inhibit merozoite invasion, suggesting a unique survival strategy involving immune evasion and host adaptation. Using a mathematical approach to model this free-living stage of Plasinodium in interaction with specific antibodies and a heterogeneous red blood cell population, we investigate if, and under what conditions, this mechanism of clonal phenotypic variation can play a role in immune evasion and adaptation to a dynamic erythropoietic environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available