4.5 Review

An introduction to Bayesian hierarchical models with an application in the theory of signal detection

Journal

PSYCHONOMIC BULLETIN & REVIEW
Volume 12, Issue 4, Pages 573-604

Publisher

PSYCHONOMIC SOC INC
DOI: 10.3758/BF03196750

Keywords

-

Ask authors/readers for more resources

Although many nonlinear models of cognition have been proposed in the past 50 years, there has been little consideration of corresponding statistical techniques for their analysis. In analyses with nonlinear models, unmodeled variability from the selection of items or participants may lead to asymptotically biased estimation. This asymptotic bias, in turn, renders inference problematic. We show, for example, that a signal detection analysis of recognition memory data leads to asymptotic underestimation of sensitivity. To eliminate asymptotic bias, we advocate hierarchical models in which participant variability, item variability, and measurement error are modeled simultaneously. By accounting for multiple sources of variability, hierarchical models yield consistent and accurate estimates of participant and item effects in recognition memory. This article is written in tutorial format; we provide an introduction to Bayesian statistics, hierarchical modeling, and Markov chain Monte Carlo computational techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available