4.5 Article

Detection of the inhibitory neurotransmitter GABA in macrophages by magnetic resonance spectroscopy

Journal

JOURNAL OF LEUKOCYTE BIOLOGY
Volume 78, Issue 2, Pages 393-400

Publisher

WILEY
DOI: 10.1189/jlb.1203604

Keywords

inflammation; MRS; mouse; brain

Funding

  1. Medical Research Council [G0300456] Funding Source: Medline
  2. Medical Research Council [G0300456] Funding Source: researchfish
  3. MRC [G0300456] Funding Source: UKRI

Ask authors/readers for more resources

Macrophages are key components of the inflammatory response to tissue injury, but their activities can exacerbate neuropathology. High-resolution magnetic resonance spectroscopy was used to identify metabolite levels in perchloric acid extracts of cultured cells of the RAW 264.7 murine macrophage line under resting and lipopolysaccharide-activated conditions. Over 25 metabolites were identified including gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter not previously reported to be present in macrophages. The presence of GABA was also demonstrated in extracts of human peripheral blood monocyte-derived macrophages. This finding suggests that there may be communication between damaged central nervous system (CNS) tissue and recruited macrophages and resident microglia, which could help orchestrate the immune response. On activation, lactate, glutamine, glutamate, and taurine levels were elevated significantly, and GABA and alanine were reduced significantly. Strong resonances from glutathione, evident in the macrophage two-dimensional H-1 spectrum, suggest that this may have potential as a noninvasive marker of macrophages recruited to the CNS, as it is only present at low levels in normal brain. Alternatively, a specific combination of spectroscopic changes, such as lactate, alanine, glutathione, and polyamines, may prove to be the most accurate means of detecting macrophage recruitment to the CNS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available