4.6 Article

Quantification of Cyprinid Herpesvirus 3 in Environmental Water by Using an External Standard Virus

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 76, Issue 1, Pages 161-168

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02011-09

Keywords

-

Funding

  1. RIHN [C-06]
  2. Ministry of Education, Science, Sports, and Culture, Japan [20710013]

Ask authors/readers for more resources

Cyprinid herpesvirus 3 (CyHV-3), a lethal DNA virus that spreads in natural lakes and rivers, infects common carp and koi. We established a quantification method for CyHV-3 that includes a viral concentration method and quantitative PCR combined with an external standard virus. Viral concentration methods were compared using the cation-coated filter and ultrafiltration methods. The recovery of virus-like particles was similar for the two methods (cation-coated filter method, 44% +/- 19%, n = 3; ultrafiltration method, 50% +/- 3%, n = 3); however, the former method was faster and more suitable for routine determinations. The recovery of seeded CyHV-3 based on the cation-coated filter method varied by more than 3 orders of magnitude among the water samples. The recovery yield of CyHV-3 was significantly correlated with that of the seeded lambda phage, and the average ratio of lambda to the CyHV-3 recovery yield was 1.4, indicating that lambda is useful as an external standard virus for determining the recovery yield of CyHV-3. Therefore, to quantify CyHV-3 in environmental water, a known amount of lambda was added as an external standard virus to each water sample. Using this method, CyHV-3 DNA was detected in 6 of the 10 (60%) types of environmental water tested; the highest concentration of CyHV-3 DNA was 2 x 10(5) copies liter(-1). The lowest recovery limit of CyHV-3 DNA was 60 copies liter(-1). This method is practical for monitoring CyHV-3 abundance in environmental water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available