4.5 Article

Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the tristetraprolin family of CCCH tandem zinc finger proteins

Journal

BIOLOGY OF REPRODUCTION
Volume 73, Issue 2, Pages 297-307

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.105.040527

Keywords

AU-rich element; cytokines; deadenylation; gene regulation; mRNA turnover; placenta; rodent-specific genes; trophoblast

Ask authors/readers for more resources

Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger (TZF) proteins can bind directly to AU-rich elements (ARE) in mRNA, causing deadenylation and destabilization of the transcripts to which they bind. We describe here a novel fourth mammalian member of the TTP protein family, designated ZFP36L3, which could also bind directly to ARE-containing RNAs and could promote the deadenylation and degradation of ARE-containing target RNAs. Zfp36l3 transcript expression was detected only in placenta and extraembryonic tissues in the mouse. It was expressed throughout development in the placenta and was particularly highly expressed in the cells of the labyrinthine layer of the trophoblastic placenta. Unlike the other family members, the expression of a ZFP36L3-green fluorescent protein fusion protein was entirely cytoplasmic when expressed in 293 cells, even in the presence of the CRM1-dependent nuclear export inhibitor leptomycin B. Zfp36l3 was located on the mouse X chromosome; a similar predicted gene was present on the rat X chromosome, but there was no evidence for a similar gene in humans. ZFP36L3 may thus be a rodent-specific or even murine-specific member of the TTP protein family. Its presumed role in placental physiology may be unique to rodents or murine rodents, but this role may be subsumed by other family members in nonrodents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available