4.5 Article

Regulation of neurite outgrowth in N1E-115 cells through PDZ-mediated recruitment of diacylglycerol kinase ζ

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 25, Issue 16, Pages 7289-7302

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.25.16.7289-7302.2005

Keywords

-

Ask authors/readers for more resources

Syntrophins are scaffold proteins that regulate the subcellular localization of diacylglycerol kinase zeta (DGK-zeta), an enzyme that phosphorylates the lipid second-messenger diacylglycerol to yield phosphatidic acid. DGK-zeta and syntrophins are abundantly expressed in neurons of the developing and adult brain, but their function is unclear. Here, we show that they are present in cell bodies, neurites, and growth cones of cultured cortical neurons and differentiated N1E-115 neuroblastoma cells. Overexpression of DGK-zeta in N1E-115 cells induced neurite formation in the presence of serum, which normally prevents neurite outgrowth. This effect was independent of DGK-zeta kinase activity but dependent on a functional C-terminal PDZ-binding motif, which specifically interacts with syntrophin PDZ domains. DGK-zeta mutants with a blocked C terminus acted as dominant-negative inhibitors of outgrowth from serum-deprived N1E-115 cells and cortical neurons. Several lines of evidence suggest DGK-zeta promotes neurite outgrowth through association with the GTPase Rac1. DGK-zeta colocalized with Rac1 in neuronal processes and DGK-zeta-induced outgrowth was inhibited by dominant-negative Rac1. Moreover, DGK-zeta directly interacts with Rac1 through a binding site located within its C1 domains. Together with syntrophin, these proteins form a tertiary complex in N1E-115 cells. A DGK-zeta mutant that mimics phosphorylation of the MARCKS domain was unable to bind an activated Rac1 mutant (Rac1(V12)) and phorbol myristate acetate-induced protein kinase C activation inhibited the interaction of DGK-zeta with Rac1(V12), suggesting protein kinase C-mediated phosphorylation of the MARCKS domain negatively regulates DGK-zeta binding to active Rac1. Collectively, these findings suggest DGK-zeta, syntrophin, and Rac1 form a regulated signaling complex that controls polarized outgrowth in neuronal cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available