4.6 Article

Femtosecond laser absorption in fused silica: Numerical and experimental investigation

Journal

PHYSICAL REVIEW B
Volume 72, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.085128

Keywords

-

Ask authors/readers for more resources

Single pulse transmissivity and reflectivity of fused silica irradiated by tightly focused 90 fs laser pulses at a center wavelength of 800 nm are numerically and experimentally investigated to study the role of nonlinear photoionization and avalanche ionization processes in free electron generation. The laser beam inside fused silica is modeled with a (2+1)-dimensional propagation equation which considers the effects of laser beam diffraction, group velocity dispersion, self-focusing, defocusing, and absorption due to the free electrons and nonlinear photoionization of the valence electrons. Comparison of our simulation to the experimental data reveals that the avalanche ionization coefficients are much smaller than some previously reported results and that avalanche ionization is of minor importance in generating free electrons in fused silica at the laser fluence levels considered in this study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available