4.8 Article

Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers

Journal

CARBON
Volume 43, Issue 10, Pages 2175-2185

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2005.03.031

Keywords

carbon nanofibers; microstructure; mechanical properties

Ask authors/readers for more resources

The mechanical and structural properties of individual electrospun PAN-derived carbon nanofibers are presented. EELS spectra of the carbonized nanofibers shows the C atoms to be partitioned into similar to 80% sp(2) bonds and similar to 20% sp(3) bonds which agrees with the observed structural disorder in the fibers. TEM images show a skin-core structure for the fiber cross-section. The skin region contains layered planes oriented predominantly parallel to the surface, but there are some crystallites in the skin region misoriented with respect to the fiber long axis. Microcombustion analysis showed 89.5% carbon, 3.9% nitrogen, 3.08% oxygen and 0.33% hydrogen. Mechanical testing was performed on individual carbonized nanofibers a few microns in length and hundreds of nanometers in diameter. The bending modulus was measured by a mechanical resonance method and the average modulus was 63 GPa. The measured fracture strengths were analyzed using a Weibull statistical distribution. The Weibull fracture stress fit to this statistical distribution was 0.64 GPa with a failure probability of 63%. (C) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available