4.6 Article

Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 74, Issue 6, Pages 1922-1931

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01720-07

Keywords

-

Ask authors/readers for more resources

Understanding the factors that influence the distribution and abundance of marine diazotrophs is important in order to assess their role in the oceanic nitrogen cycle. Environmental DNA samples from four cruises to the North Atlantic Ocean, covering a sampling area of 0 degrees N to 42 degrees N and 67 degrees W to 13 degrees W, were analyzed for the presence and amount of seven nifH phylotypes using real-time quantitative PCR and TaqMan probes. The cyanobacterial phylotypes dominated in abundance (94% of all nifH copies detected) and were the most widely distributed. The filamentous cyanobacterial type, which included both Trichodesmium and Katagnymene, was the most abundant (51%), followed by group A, an uncultured unicellular cyanobacterium (33%), and gamma A, an uncultured gammaproteobacterium (6%). Group B, unicellular cyanobacterium Crocosphaera, and group C Cyanothece-like phylotypes were not often detected (6.9% and 2.3%, respectively), but where present, could reach high concentrations. Gamma P, another uncultured gammaproteobacterium, was seldom detected (0.5%). Water temperature appeared to influence the distribution of many nifH phylotypes. Very high (up to 1 x 10(6) Copies liter(-1)) nifH concentrations of group A were detected in the eastern basin (25 to 17 degrees N, 27 to 30 degrees W), where the temperature ranged from 20 to 23 degrees C. The highest concentrations of filamentous phylotypes were measured between 25 and 30 degrees C. The uncultured cluster III phylotype was uncommon (0.4%) and was associated with mean water temperatures of 18 degrees C. Diazotroph abundance was highest in regions where modeled average dust deposition was between I and 2 g/m(2)/year.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available