4.7 Article

Downregulated expression of plasminogen activator inhibitor-1 augments myocardial neovascularization and reduces cardiomyocyte apoptosis after acute myocardial infarction

Journal

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
Volume 46, Issue 3, Pages 536-541

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jacc.2005.04.047

Keywords

-

Funding

  1. NHLBI NIH HHS [HL-02-017] Funding Source: Medline
  2. NIA NIH HHS [AG-01-006] Funding Source: Medline

Ask authors/readers for more resources

OBJECTIVES The aim of this study was to examine whether selective plasminogen activator inhibitor type 1 (PAI-1) downregulation in the acutely ischemic heart increases the myocardial microvasculature and improves cardiomyocyte (CM) survival. BACKGROUND Endogenous myocardial neovascularization is an important process enabling cardiac functional recovery after acute myocardial infarction. Expression of PAI-1, a potent inhibitor of angiogenesis, is induced in ischemic heart tissue. METHODS A sequence-specific catalytic deoxyribonucleic acid (DNA) enzyme was used to reduce PAI-1 levels in cultured endothelial cells and in ischemic myocardium. At the time of coronary artery ligation, rats were randomized into three groups, each receiving an intramyocardial injection (IMI) of a single dose at three different sites of the peri-infarct region consisting, respectively, of DNA enzyme E2 targeting rat PAI-1 (E2), scrambled control DNA enzyme (EO), or saline. Cardiomyocyte apoptosis, capillary density, and echocardiography were studied two weeks following infarction. RESULTS The E2 DNA enzyme, which efficiently inhibited rat PAI-1 expression in vitro, induced prolonged suppression (> 2 weeks) of PAI-1 messenger ribonucleic acid and protein in rat heart tissues after a single IMI. At two weeks, hearts from experimental rats had over five-fold greater capillary density, 70% reduction in apoptotic CMs, and four-fold greater functional recovery compared with controls. CONCLUSIONS These results imply a causal relationship between elevated PAI-1 levels in ischemic hearts and adverse outcomes, and they suggest that strategies to reduce cardiac PAI-1 activity may augment neovascularization and improve functional recovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available