4.8 Article

Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 30, Pages 10526-10532

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja0434331

Keywords

-

Funding

  1. NIBIB NIH HHS [R33 EB-00673] Funding Source: Medline

Ask authors/readers for more resources

Quantum dots with a core/shell/shell structure consisting of an alloyed core of InAsxP1-x, an intermediate shell of InP, and an outer shell of ZnSe were developed. The InAsxP1-x alloyed core has a graded internal composition with increasing arsenic content from the center to the edge of the dots. This compositional gradient results from two apparent effects: (1) the faster reaction kinetics of the phosphorus precursor compared to the arsenic precursor, and (2) a post-growth arsenic-phosphorus exchange reaction that increases the arsenic content. The cores have a zinc blend structure for all compositions and show tunable emission in the near-infrared (NIR) region. A first shell of InP leads to a red-shift and an increase in quantum yield. The final shell of ZnSe serves to stabilize the dots for applications in aqueous environments, including NIR biomedical fluorescence imaging. These NIR-emitting core/shell/shell InAsxP1-x/InP/ZnSe were successfully used in a sentinel lymph node mapping experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available