4.7 Article

Degradation of chondroitin sulfate proteoglycans induces sprouting of intact Purkinje axons in the cerebellum of the adult rat

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 31, Pages 7150-7158

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0683-05.2005

Keywords

axon growth inhibitory molecules; axon regeneration; structural plasticity; extracellular matrix; myelin; Purkinje cell

Categories

Ask authors/readers for more resources

Chondroitin sulfate proteoglycans are major constituents of the extracellular matrix and form perineuronal nets. Information regarding the growth-inhibitory activity of these molecules after injury is rapidly expanding. However, less is known about their physiological role in the adult undamaged CNS. Here, we investigated the function of chondroitin sulfate proteoglycans in maintaining the proper structure of Purkinje axons in the cerebellum of adult rats. To this end, we examined the morphology and distribution of intracortical Purkinje neurites after intraparenchymal injection of chondroitinase ABC. Staining with the lectin Wisteria floribunda agglutinin or 2B6 antibodies showed that this treatment efficiently removed chondroitin sulfate proteoglycans from wide areas of the cerebellar cortex. In the same sites, there was a profuse outgrowth of terminal branches from the Purkinje infraganglionic plexus, which invaded the deeper regions of the granular layer. In contrast, myelinated axon segments were not affected and maintained their normal relationship with oligodendroglial sheaths. Purkinje axon sprouting was first evident at 4 d and increased further at 7 d after enzyme application. Within 42 d, the expression pattern of chondroitin sulfate proteoglycans gradually recovered, whereas axonal modifications progressively regressed. Our results show that, in the absence of injury or novel external stimuli, degradation of chondroitin sulfate proteoglycans is sufficient to induce Purkinje axon sprouting but not the formation of long-lasting synaptic contacts. Together with other growth-inhibitory molecules, such as myelin-associated proteins, chondroitin sulfate proteoglycans restrict structural plasticity of intact Purkinje axons to maintain normal wiring patterns in the adult cerebellar cortex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available