4.8 Article

A crossover in the mechanical response of nanocrystalline ceramics

Journal

SCIENCE
Volume 309, Issue 5736, Pages 911-914

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1114411

Keywords

-

Ask authors/readers for more resources

Multimillion-atom molecular dynamics simulation of indentation of nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, resulting from the coexistence of brittle grains and soft amorphous grain boundary phases. Simulations predict a crossover from intergranular continuous deformation to intragrain discrete deformation at a critical indentation depth. The crossover arises from the interplay between cooperative grain sliding, grain rotations, and intergranular dislocation formation similar to stick-slip behavior. The crossover is also manifested in switching from deformation dominated by indentation-induced crystallization to deformation dominated by disordering, leading to amorphization. This interplay between deformation mechanisms is critical for the design of ceramics with superior mechanical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available