3.8 Article

Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex

Journal

DEVELOPMENTAL BRAIN RESEARCH
Volume 158, Issue 1-2, Pages 41-49

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.devbrainres.2005.05.007

Keywords

development and regeneration; neurotransmitter systems and channels; vesicular GABA transporter; diacrine; exocytosis; GABAergic synapse; astrocyte

Ask authors/readers for more resources

In the brain, gamma-amino butyric acid (GABA), released extrasynaptically and synaptically from GABAergic neurons, plays important roles in morphogenesis, expression of higher functions and so on. In the GABAergic transmission system, plasma membrane GABA transporters (GATs) mediate GABA-uptake from the synaptic cleft in the mature brain and are thought to mediate diacrine of cytosolic GABA in the immature brain. In the present study, we focused on two GATs (GAT-1 and GAT-3) in the mouse cerebellar cortex, which are widely localized in neural and glial cells. Firstly, we examined the localization of GATs in the dendrites and cell bodies of developing GABAergic neurons, where GABA is extrasynaptically distributed, to clarify the GABA-diacrine before synaptogenesis. Secondly, we examined the developmental changes in the localization of GATs to reveal the development of the GABA-uptake system. Neither transporter was detected within the dendrites and cell bodies of GABAergic neurons, including Purkinje, stellate, basket and Golgi cells, in the immature cerebellar cortex. GAT-1 was observed within the Golgi cell axon terminals after postnatal day 5 (P5) and presynaptic axons of stellate and basket cells after P7. GAT-3 was localized within the astrocyte processes, scaling the GABAergic synapses in the Purkinje cell and granular layers after P10. These results indicated that GABA-diacrine did not work in the mouse cerebellar cortex. The onset of GAT-1-expression was prior to that of GAT-3. GAT-1 started to be localized within the GABAergic axon terminals during synapse formation. GAT-3 started to be localized within astrocyte processes when they sealed the synapses. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available