4.8 Article

Polymorphism of DNA-anionic liposome complexes reveals hierarchy of ion-mediated interactions

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0502416102

Keywords

colloids; like-charge attraction; membrane; self-assembly; x-ray

Ask authors/readers for more resources

Self-assembled DNA delivery systems based on anionic lipids (ALs) complexed with DNA mediated by divalent cations have been recently introduced as an alternative to cationic lipid-DNA complexes because of their low cytotoxicity. We investigate AL-DNA complexes induced by different cations by using synchrotron small angle x-ray scattering and confocal microscopy to show how different ion-mediated interactions are expressed in the self-assembled structures and phase behavior of AL-DNA complexes. The governing interactions in AL-DNA systems are complex: divalent ions can mediate strong attractions between different combinations of the components (such as DNA-DNA and membrane-membrane). Moreover, divalent cations can coordinate nonelectrostatically with lipids and modify the resultant membrane structure. We find that at low membrane charge densities AL-DNA complexes organize into a lamellar structure of alternating DNA and membrane layers crosslinked by ions. At high membrane charge densities, a new phase with no analog in cationic lipid-DNA systems is observed: DNA is expelled from the complex, and a lamellar stack of membranes and intercalated ions is formed. For a subset of the ionic species, high ion concentrations generate an inverted hexagonal phase comprised of DNA strands wrapped by ion-coated lipid tubes. A simple theoretical model that takes into account the electrostatic and membrane elastic contributions to the free energy shows that this transition is consistent with an ion-induced change in the membrane spontaneous curvature, c(0). Moreover, the crossover between the lamellar and inverted hexagonal phases occurs at a critical c(0) that agrees well with experimental values.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available