4.7 Article

Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 299, Issue 1-2, Pages 167-177

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2005.05.014

Keywords

nanoparticles; drugs; high pressure homogenization; dissolution; crystalline state; nifedipine

Ask authors/readers for more resources

Poorly water-soluble drugs such as nifedipine (NIF) (similar to 20 ltg/ml) offer challenging problems in drug formulation as poor solubility is generally associated to poor dissolution characteristics and thus to poor oral bioavailability. In order to enhance these characteristics, preparation of nifedipine nanoparticles has been achieved using high pressure homogenization. The homogenization procedure has first been optimized in regard to particle size and size distribution. Nanoparticles were characterized in terms of size, morphology and redispersion characteristics following water-removal. Saturation solubility and dissolution characteristics were investigated and compared to the un-milled commercial NIF to verify the theoretical hypothesis on the benefit of increased surface area. Crystalline state evaluation before and following particle size reduction was also conducted through differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) to denote eventual transformation to amorphous state during the homogenization process. Through this study, it has been shown that initial crystalline state is maintained following particle size reduction and that the dissolution characteristics of nifedipine nanoparticles were significantly increased in regards to the commercial product. The method being simple and easily scaled up, this approach should have a general applicability to many poorly water-soluble drug entities. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available