4.8 Article

Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability

Journal

CELL
Volume 122, Issue 3, Pages 365-378

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2005.06.008

Keywords

-

Funding

  1. NIGMS NIH HHS [R37 GM48259] Funding Source: Medline

Ask authors/readers for more resources

SR proteins constitute a family of pre-mRNA splicing factors now thought to play several roles in mRNA metabolism in metazoan cells. Here we provide evidence that a prototypical SR protein, ASF/SF2, is unexpectedly required for maintenance of genomic stability. We first show that in vivo depletion of ASF/SF2 results in a hypermutation phenotype likely due to DNA rearrangements, reflected in the rapid appearance of DNA double-strand breaks and high-molecular-weight DNA fragments. Analysis of DNA from ASF/ SF2-depleted cells revealed that the nontemplate strand of a transcribed gene was single stranded due to formation of an RNA:DNA hybrid, R loop structure. Stable overexpression of RNase H suppressed the DNA-fragmentation and hypermutation phenotypes. Indicative of a direct role, ASF/SF2 prevented R loop formation in a reconstituted in vitro transcription reaction. Our results support a model by which recruitment of ASF/SF2 to nascent transcripts by RNA polymerase 11 prevents formation of mutagenic R loop structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available