4.6 Article

Induction of blood-brain barrier properties in cultured brain capillary endothelial cells: Comparison between primary glial cells and C6 cell line

Journal

GLIA
Volume 51, Issue 3, Pages 187-198

Publisher

WILEY
DOI: 10.1002/glia.20189

Keywords

C6; primary glial cells; endothelial cells; blood-brain barrier; in vitro model

Categories

Ask authors/readers for more resources

The communication between glial cells and brain capillary endothelial cells is crucial for a well-differentiated bloodbrain barrier (BBB). It has been suggested that in vitro primary glial cells (GCs) be replaced by the glial C6 cell line to standardise the model further. This study compares directly the structural and functional differentiation of bovine brain capillary endothelial cells (BBCECs) induced by co-culture with rat primary GCs or C6 cells, for the first time. Transendothelial electrical resistance (TEER) measurements showed that under no condition were C6 cells able to reproduce TEER values as high as in the presence of GCs. At the same time, permeability of the BBCECs to both radioactive sucrose and FITC-inulin was 2.5-fold higher when cells were co-cultured with C6 than with GCs. Furthermore, immunocytochemistry studies showed different cell morphology and less developed tight junction pattern of BBCECs co-cultured with C6 toward GCs. Additionally, studies on P-glycoprotein (P-gp) showed much lower P-gp presence and activity in BBCECs co-cultured with C6 than GCs. Both VEGF mRNA expression and protein content were dramatically increased when compared with GCs, suggesting that VEGF could be one of the factors responsible for higher permeability of BBB. Our results clearly indicate that, in the presence of the glial C6 cell line, BBCECs did not differentiate as well as in the coculture with primary GCs at both structural and functional levels. (c) 2005 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available