4.8 Review

Ethanol biosensors based on alcohol oxidase

Journal

BIOSENSORS & BIOELECTRONICS
Volume 21, Issue 2, Pages 235-247

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2004.09.030

Keywords

ethanol; alcohol oxidase; amperometric electrodes; immobilised enzyme reactors; horseradish peroxidase; Clark oxygen electrode

Ask authors/readers for more resources

The detection and quantification of ethanol with high sensitivity, selectivity and accuracy is required in many different areas. A variety of methods and strategies have been reported for the determination of this analyte including gas chromatography, liquid chromatography, refractometry and spectrophotometry, among other. The use of the enzyme alcohol oxidase (AOX) on the analysis of ethanol in complex samples allows a considerable enhancement in specificity. This paper reviews the state of the art on ethanol determination based on AOX sensors, using either electrochemical electrodes or immobilised enzyme reactors. Almost all AOX-based ethanol sensors developed so far are based on the monitoring of O-2 consumption or H2O2 formation. This has been mostly achieved using amperometric electrodes set at appropriate potentials namely, -600 mV for O-2 monitoring or +600 mV for H2O2 monitoring. Mediated and non-mediated bienzymatic systems have also been assembled using AOX coupled to horseradish peroxidase (HRP). Different types of electrodes have been proposed for the detection of ethanol, namely, membrane electrode, carbon paste electrodes, screen-printed electrodes and self-assembled monolayers. Another approach to work with this sensitive enzyme is to use high amounts of AOX in order to create an enzyme reservoir, a strategy which can be implemented using immobilised enzyme reactors. These reactors can be combined with a colorimetric detection in a flow-injection analysis system or with electrochemical transducers. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available