4.7 Article Proceedings Paper

Synthesis, characterization and application of a novel sorbent, glucamine-modified MCM-41, for the removal/preconcentration of boron from waters

Journal

ANALYTICA CHIMICA ACTA
Volume 547, Issue 1, Pages 31-41

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2005.03.043

Keywords

boron; inductively coupled plasma optical emission spectrometry; ICP-OES; functionalization; MCM-41; N-methylglucamine; Amberlite IRA 743

Ask authors/readers for more resources

A novel sorbent was prepared by the functionalization of an inorganic support material, MCM-41, with N-methylglucamine for the uptake of boron from aqueous solutions prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Characterization of the newly synthesized material was performed using BET, XRD, TEM, SEM and DRIFTS techniques, in addition to its C and N elemental content. Sorption behavior of the novel sorbent for boron was also investigated and found to obey Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The maximum amount of B (as H3BO3) that can be sorbed by the sorbent was calculated from the D-R isotherm and was found to be 0.8 mmol B g(-1) of sorbent. The applicability of the new sorbent for the removal/preconcentration of boron from aqueous samples was examined by batch method. It was found that the sorbent can take up 85% of boron in 5 min whereas quantitative sorption is obtained in 30 min. Any pH greater than 6 can be used for sorption. Desorption from the sorbent was carried out using 1.0 M HNO3. The sorption efficiency of the new sorbent was also compared to that of Amberlite IRA 743, a commercial resin with N-methylglucamine functional groups. Within the experimental conditions employed, the new sorbent was found to have higher sorption efficiency than the commercial resin. For method validation, spike recovery tests were performed at various concentration levels in different water types and were found to be between 83-95 and 75-92% for ultra pure water and geothermal water, respectively. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available