4.8 Article

Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: Efficacy, products, and pathways

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 39, Issue 16, Pages 6029-6036

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es050036x

Keywords

-

Funding

  1. NIEHS NIH HHS [P42ES04911-14] Funding Source: Medline

Ask authors/readers for more resources

A systematic investigation of the feasibility of and mechanisms for transformation and removal of bisphenol A (BPA) from aqueous phase via oxidative coupling mediated by horseradish peroxidase is described. It is demonstrated that BPA can be effectively transformed into precipitable solid products in HRP-mediated oxidative coupling reactions. A total of 13 reaction intermediates and products are identified using LC/MS and GC/MS techniques, and with the help of ab initio molecular modeling, detailed reaction pathways are proposed. It is postulated that two BPA radicals are coupled primarily by the interaction of an oxygen atom on one radical and propyl-substituted aromatic carbon atom on another, followed by elimination of an isopropylphenol carboncation. All intermediates or products detected can be interpreted as resulting from either coupling or substitution reactions between BPA and other intermediates or products. The efficacy of the reaction at low substrate concentrations is demonstrated using a sensitive analytical procedure involving solid-phase extractions. The results suggest that catalyzed oxidative coupling reactions may be important natural transformation pathways for estrogenic phenolic compounds and indicate their potential use as an efficient means for removal of estrogenicity from waters and wastewaters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available