4.7 Article

GPVI and α2β1 play independent critical roles during platelet adhesion and aggregate formation to collagen under flow

Journal

BLOOD
Volume 106, Issue 4, Pages 1268-1277

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2004-11-4434

Keywords

-

Categories

Funding

  1. NHLBI NIH HHS [HL-62550-02, HL-67311-01] Funding Source: Medline

Ask authors/readers for more resources

The roles of the 2 major platelet-collagen receptors, glycoprotein VI (GPVI) and integrin alpha(2)beta(1), have been intensely investigated using a variety of methods over the past decade. In the present study, we have used pharmacologic and genetic approaches to study human and mouse platelet adhesion to collagen under flow conditions. Our studies demonstrate that both GPVI and integrin alpha(2)beta(1) play significant roles for platelet adhesion to collagen under flow and that the loss of both receptors completely ablates this response. Intracellular signaling mediated by the cytoplasmic adaptor Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) but not by the transmembrane adaptor linker for activation of T cells (LAT) is critical for platelet adhesion to collagen under flow. In addition, reduced GPVI receptor density results in severe defects in platelet adhesion to collagen under flow. Defective adhesion to collagen under flow is associated with prolonged tail-bleeding times in mice lacking one or both collagen receptors. These studies establish platelet-collagen responses under physiologic flow as the consequence of a close partnership between 2 structurally distinct receptors and suggest that both receptors play significant hemostatic roles in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available