4.4 Article

Upper mantle anisotropy beneath Japan from shear wave splitting

Journal

PHYSICS OF THE EARTH AND PLANETARY INTERIORS
Volume 151, Issue 3-4, Pages 206-222

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.pepi.2005.03.003

Keywords

S-wave splitting; anisotropy; upper mantle; Japan

Ask authors/readers for more resources

In this study, we utilize data from 64 broadband seismic stations of the Japanese F-net network to investigate the three-dimensional pattern of anisotropy in the subduction system beneath Japan. We have compiled a database of approximately 1900 high-quality splitting measurements, selected by visual inspection of over 25,000 records of S, SKS, and SKKS phases at F-net stations, covering a wide range of incidence angles, incoming polarization angles, and backazimuths. Analysis of the variations of measured splitting parameters with these parameters allows us to consider complexities in structure such as multiple anisotropic layers, dipping symmetry axes, and small-scale lateral variations in anisotropic properties. Here we focus on the presentation of the splitting measurements themselves; a detailed interpretation in terms of tectonics and mantle flow is beyond the scope of this paper. In the southern part of the F-net array, along the Ryukyu arc, we find that fast directions are consistently trench-parallel, with splitting times of I s or more. Moving northward along the array, the measured splitting patterns become more complicated, with significant variations in apparent splitting parameters that indicate complex anisotropic structure. Additionally, measured fast directions vary significantly over short length scales, and stations separated by less than 100 km often exhibit very different splitting behavior. This increase in complexity of anisotropic structure coincides geographically with the complicated slab morphology of the subducting Pacific plate. At stations on Hokkaido, to the north, and Kyushu, to the south, we see some evidence that the fast direction of anisotropy may rotate from trench-parallel close to the trench to subduction-parallel further away from the trench, which may correspond either to a change in stress conditions and/or volatile content, or to a change in flow regime. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available