4.8 Article

Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 39, Issue 16, Pages 6237-6245

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es048262e

Keywords

-

Ask authors/readers for more resources

Nanosized iron (< 100 nm in diameter) was synthesized in the laboratory and applied to the reduction of eight chlorinated ethanes (hexachloroethane (HCA), pentachloroethane (PCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1,1-trichloroethane (1,1,1-TCA), 1,2-dichloroethane (1,2-DCA), and 1,1-dichloroethane(1,1-DCA)) in batch reactors, Reduction of 1,1,1-TCA increased linearly with increasing iron loading between 0.01 and 0.05 g per 124 mL solution (0.08-0.4 g/L). Varying initial concentrations of PCA between 0.025 and 0.125 mM resulted in relatively constant pseudo-first-order rate constants, indicating PCA removal conforms to pseudo-first-order kinetics. The reduction of 1,1,2,2-TeCA decreased with increasing pH; however, dehydrohalogenation of 1,1,2,2-TeCA became important at high pH. All chlorinated ethanes except 1,2-DCA were transformed to less chlorinated ethanes or ethenes, The surface-area-normalized rate constants from first-order kinetics analysis ranged from < 4 x 10(-6) to 0.80 L m(-2) h(-1). In general, the reactivity increased with increasing chlorination. Among tri- and tetra substituted compounds, the reactivity was higher for compounds with chlorine atoms more localized on a single carbon (e.g., 1,1,1-TCA > 1,1,2-TCA). Reductive P-elimination was the major pathway for the chlorinated ethanes possessing alpha,beta-pairs of chlorine atoms to form chlorinated ethenes, which subsequently reacted with nanosized iron. Reductive alpha-elimination and hydrogenolysis were concurrent pathways for compounds possessing chlorine substitution on one carbon only, forming less chlorinated ethanes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available