4.7 Article

Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 33, Pages 7615-7622

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1245-05.2005

Keywords

spinal muscular atrophy; exercise; mouse model; neuroprotection; alternative splicing; muscular phenotype

Categories

Ask authors/readers for more resources

Several studies indicate that physical exercise is likely to be neuroprotective, even in the case of neuromuscular disease. In the present work, we evaluated the efficiency of running-based training on type 2 spinal muscular atrophy (SMA)-like mice. The model used in this study is an SMN (survival motor neuron)-null mouse carrying one copy of a transgene of human SMN2. The running-induced benefits sustained the motor function and the life span of the type 2 SMA-like mice by 57.3%. We showed that the extent of neuronal death is reduced in the lumbar anterior horn of the spinal cord of running-trained mice in comparison with untrained animals. Notably, exercise enhanced motoneuron survival. We showed that the running-mediated neuroprotection is related to a change of the alternative splicing pattern of exon 7 in the SMN2 gene, leading to increased amounts of exon 7-containing transcripts in the spinal cord of trained mice. In addition, analysis at the level of two muscles from the calf, the slow-twitch soleus and the fast-twitch plantaris, showed an overall conserved muscle phenotype in running-trained animals. These data provide the first evidence for the beneficial effect of exercise in SMA and might lead to important therapeutic developments for human SMA patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available