4.5 Article

Characterization of titanium dioxide nanoparticles using molecular dynamics simulations

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 32, Pages 15243-15249

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp050963q

Keywords

-

Ask authors/readers for more resources

Molecular dynamics simulations of titanium dioxide nanoparticles in the three commonly occurring phases (anatase, brookite, and rutile) are reported. The structural properties inferred by simulated X-ray diffraction patterns of the nanoparticles were investigated. The titanium-oxygen bond length as a function of size, phase, and temperature was determined and was found to be dependent on the coordination environment of the titanium and independent of phase and size. The equilibrium Ti-O bond length is 1.86 angstrom for a four-coordinated titanium ion, 1.92 angstrom for a five-coordinated titanium ion, and 1.94 angstrom for an octahedral titanium ion. Smaller nanoparticles are characterized by a higher fraction of titanium ions that are four and five coordinated, due to the larger surface area-to-volume ratios. The surface energies for anatase, rutile, and brookite particles were reported. The surface energy of the nanoparticle increases and approaches a constant value as the particle gets bigger. The surface energies of small rutile particles are higher than that for anatase particles of a similar size, consistent with anatase being the more stable phase of nanocrystalline titanium dioxide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available