4.8 Article

Molecular mechanism for switching of P-falciparum invasion pathways into human erythrocytes

Journal

SCIENCE
Volume 309, Issue 5739, Pages 1384-1387

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1115257

Keywords

-

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

The malaria parasite, Plasmodium falciparum, exploits multiple ligand-receptor interactions, called invasion pathways, to invade the host erythrocyte. Strains of P. falciparum vary in their dependency on sialated red cell receptors for invasion. We show that switching from sialic acid-dependent to -independent invasion is reversible and depends on parasite ligand use. Expression of P. falciparum reticulocyte-binding like homolog 4 (PfRh4) correlates with sialic acid-independent invasion, and PfRh4 is essential for switching invasion pathways. Differential activation of PfRh4 represents a previously unknown mechanism to switch invasion pathways and provides P. falciparum with exquisite adaptability in the face of erythrocyte receptor polymorphisms and host immune responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available