4.6 Article

Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors

Journal

SOFT MATTER
Volume 1, Issue 3, Pages 238-242

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b506876b

Keywords

-

Ask authors/readers for more resources

Holographic photopolymerization (H-P) is a simple, fast and attractive means to fabricate one-, two- and three-dimensional complex structures. Liquid crystals, nanoparticles and silicate nano-plates have been patterned into submicron periodical structures. In this article, we report fabrication of a one-dimensional reflection grating structure by patterning a sernicrystalline polymer, polyethylene glycol (PEG), in Norland resin (thiol-ene based UV curable resin) matrix using the H-P technique. Sharp notches observed in the reflection grating of this Norland/PEG system indicate a finite Delta n present in the system due to spatial segregation of the PEG and Norland resin. The notch position red shifts upon heating and the diffraction efficiency (ratio between diffraction and incident light intensity, DE) increases from similar to 20% to 60% for the Norland 65/PEG 4600 grating. This dynamic behavior of the reflection grating is also fully reversible. The unique thermal switching behavior is attributed to the melting/formation of PEG crystals during heating/cooling. By employing different molecular weight PEGs which have different melting temperatures, a series of switching temperatures have been achieved. Since PEG can be easily coupled with a variety of functional groups, this research might shed light on fabricating multifunctional Bragg gratings using the H-P technique.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available