4.7 Article

Rapid differentiation of Mycobacterium bovis and Mycobacterium tuberculosis based on a 12.7-kb fragment by a single tube multiplex-PCR

Journal

VETERINARY MICROBIOLOGY
Volume 109, Issue 3-4, Pages 211-216

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.vetmic.2005.05.015

Keywords

Mycobacterium tuberculosis; Mycobacterium bovis; PCR

Ask authors/readers for more resources

The aim of this work was the design and validation of a rapid and easy single tube multiplex-PCR (m-PCR) assay for the unequivocal differential detection of Mycobacterium bovis and Mycobacterium tuberculosis. Oligonucleotide primers were based on the uninterrupted 229-bp sequence in the M. bovis genome and a unique 12.7-kb insertion sequence from the M. tuberculosis genome, which is responsible for species-specific genomic polymorphism between these two closely related pathogens. The m-PCR assay was optimized and validated using 22 M. bovis and 36 M. tuberculosis clinical strains isolated from diverse host species and 9 other non-tuberculous mycobacterial (NTM) strains. The designed primers invariably amplified a unique 168-bp (M. bovis-specific) and 337-bp (M. tuberculosis-specific) amplicon from M. bovis and M. tuberculosis strains, respectively. The accuracy of the assay, in terms of specificity, was 100%, as none of the NTM strains tested revealed any amplification product. As little as 20 pg of genomic DNA could be detected, justifying the sensitivity of the method. The m-PCR assay is an extremely useful, simple, reliable and rapid method for routine differential identification of cultures of M. bovis and M. tuberculosis. This m-PCR may be a valuable diagnostic tool in areas of endemicity, where bovine and human tuberculosis coexist, and the distinction of M. bovis from M. tuberculosis is required for monitoring the spread of M. bovis to humans. (C) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available