4.7 Article

Characterization of susceptibility of inbred mouse strains to diabetic nephropathy

Journal

DIABETES
Volume 54, Issue 9, Pages 2628-2637

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.54.9.2628

Keywords

-

Funding

  1. NIDDK NIH HHS [U01-DK-61018, U24-DK-59637] Funding Source: Medline

Ask authors/readers for more resources

Differential susceptibility to diabetic nephropathy has been observed in humans, but it has not been well defined in inbred strains of mice. The present studies characterized the severity of diabetic nephropathy in six inbred mouse strains including C57BL/6J, DBA/2J, FVB/NJ, MRL/MpJ, A/J, and KK/HIJ mice. Diabetes mellitus was induced using low-dose streptozotocin injection. Progression of renal injury was evaluated by serial measurements of urinary albumin excretion, glomerular filtration rate (GFR), and terminal assessment of renal morphology over 25 weeks. Despite comparable levels of hyperglycemia, urinary albumin excretion and renal histopathological changes were dramatically different among strains. DBA/2J and KK/HIJ mice developed significantly more albuminuria than C57BL/6J, MRL/MpJ, and A/J mice. Severe glomerular mesangial expansion, nodular glomerulosclerosis, and arteriolar hyalinosis were observed in diabetic DBA/2J and KK/HIJ mice. Glomerular hyperfiltration was observed in all diabetic strains studied except A/J. The significant decline in GFR was not evident over the 25-week period of study, but diabetic DBA/2J mice exhibited a tendency for GFR to decline. Taken together, these results indicate that differential susceptibility to diabetic nephropathy exists in inbred mice. DBA/2J and KK/HlJ mice are more prone to diabetic nephropathy, whereas the most widely used C57BL/6J mice are relatively resistant to development of diabetic nephropathy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available