4.5 Article

Differential renal gene expression in prehypertensive and hypertensive spontaneously hypertensive rats

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 289, Issue 3, Pages F552-F561

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00354.2004

Keywords

soluble epoxide hydrolase; hypertension; arachidonic acid; elastase; real-time polymerase chain reaction

Ask authors/readers for more resources

Development of hypertension stems from both environmental and genetic factors wherein the kidney plays a central role. Spontaneously hypertensive rats (SHR) and the nonhypertensive Wistar-Kyoto (WKY) controls are widely used as a model for studying hypertension. The present study examined the renal gene expression profiles between SHR and WKY at a prehypertensive stage ( 3 wk of age) and hypertensive stage ( 9 wk of age). Additionally, age-related changes in gene expression patterns were examined from 3 to 9 wk in both WKY and SHR. Five to six individual kidney samples of the same experimental group were pooled together, and quadruplicate hybridizations were performed using the National Institute of Environmental Health Sciences Rat version 2.0 Chip, which contains similar to 6,700 genes. Twenty two genes were found to be differentially expressed between SHR and WKY at 3 wk of age, and 104 genes were differentially expressed at 9 wk of age. Soluble epoxide hydrolase (Ephx2) was found to be significantly upregulated in SHR at both time points and was the predominant outlier. Conversely, elastase 1 (Ela1) was found to be the predominant gene downregulated in SHR at both time points. Analysis of profiles at 3 vs. 9 wk of age identified 508 differentially expressed genes in WKY rats. In contrast, only 211 genes were found to be differentially expressed during this time period in SHR. The altered gene expression patterns observed in the age-related analysis suggested significant differences in the vascular extracellular matrix system between SHR and WKY kidney. Together, our data highlight the complexity of hypertension and the numerous genes involved in and affected by this condition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available