4.6 Article

Climate change, ice conditions and reproduction in an Arctic nesting marine bird:: Brunnich's guillemot (Uria lomvia L.)

Journal

JOURNAL OF ANIMAL ECOLOGY
Volume 74, Issue 5, Pages 832-841

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2656.2005.00982.x

Keywords

nestling growth; range expansion; contraction; seabirds; sea-ice; timing of breeding

Ask authors/readers for more resources

1. We compared the reproduction of a marine diving bird, Brunnich's guillemot (Uria lomvia), breeding at two Arctic colonies close to the northern and southern limits of the species' range in the Canadian Arctic. 2. At both colonies, timing of breeding for Brunnich's guillemots was positively correlated with summer ice cover, which was determined by winter and spring temperatures. Spring temperatures also modified the effects of ice conditions on timing of breeding. 3. At Coats Island, northern Hudson Bay, in low Arctic waters, the date of egg-laying has advanced since 1981, simultaneous with a decrease in summer ice cover in surrounding waters. Lower ice cover in this region is correlated with lower chick growth rates and lower adult body mass, suggesting that reduction in summer ice extent is having a negative effect on reproduction. 4. Conversely, at Prince Leopold Island, in the High Arctic, there has been no trend in summer ice cover and no detectable change in timing of breeding. Reproduction there is less successful in years of late ice than in years of early ice break-up. 5. Current trends suggest that continued warming should benefit birds breeding on the northern limit of the species range, while adversely affecting reproduction for those on the southern margin. The probable result will be an eventual northward displacement of the population. Although this type of effect has been widely predicted, this study is among the first to demonstrate a potential causal mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available