4.6 Article

Vibrational properties of protons in hydrated BaInxZr1-xO3-x/2 -: art. no. 094303

Journal

PHYSICAL REVIEW B
Volume 72, Issue 9, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.094303

Keywords

-

Ask authors/readers for more resources

We investigate the local proton dynamics in the proton conducting hydrated perovskite system BaInxZr1-xO3-x/2 (x=0.25-0.75) using infrared spectroscopy and first-principles calculations. We show that oxygen vacancies and dopant atoms in the vicinity of the proton tilt the proton toward a neighboring oxygen creating strongly hydrogen-bonded configurations. This is manifested as a strong redshift of the O-H stretch band in the infrared absorption spectrum. We also find considerable fluctuations of the nearest and next-nearest oxygen-proton distances with time, resulting in additional spectral broadening. By comparing the frequencies of computed O-H stretch modes we can relate specific local configurations to different parts of the broad O-H stretch band. Even though hydrogen-bonded configurations favor proton transfer they hinder the long-range migration by decreasing the reorientational rate. Thus, in order to optimize the proton mobility it is important to avoid extreme configurations caused by either oxygen vacancies or dopant atoms in the perovskite structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available