4.7 Article

A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum)

Journal

THEORETICAL AND APPLIED GENETICS
Volume 111, Issue 5, Pages 898-905

Publisher

SPRINGER
DOI: 10.1007/s00122-005-0015-2

Keywords

-

Ask authors/readers for more resources

Many plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10 degrees C but above 0 degrees C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum. The QTL with the greatest phenotypic effect on stm was located in a 28 cM region on chromosome 9 (designated stm9), and enhanced chilling-tolerance was conferred by the presence of the Lycopersicon hirsutum allele at this QTL. Here, near-isogenic lines (NILs) were used to verify the effect of stm9, and recombinant sub-NILs were used to fine map its position. Replicated experiments were performed with NILs and sub-NILs in a refrigerated hydroponic tank in the greenhouse. Sub-NIL data was analyzed using least square means separations, marker-genotype mean t-tests, and composite interval mapping. A dominant QTL controlling shoot turgor maintenance under root chilling was confirmed on chromosome 9 using both NILs and sub-NILs. Furthermore, sub-NILs permitted localization of stm9 to a 2.7 cM interval within the original 28 cM QTL region. If the presence of the L. hirsutum allele at stm9 also confers chilling-tolerance in L. esculentum plants grown under field conditions, it has the potential to expand the geographic areas in which cultivated tomato can be grown for commercial production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available