4.4 Article

Processive lipid galactosyl/glucosyltransferases from Agrobacterium tumefaciens and Mesorhizobium loti display multiple specificities

Journal

GLYCOBIOLOGY
Volume 15, Issue 9, Pages 874-886

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwi066

Keywords

galactosyl diacylglycerol; galactosyltransferase; GCS; glucosylceramide; glycosyltransferase family 21

Ask authors/readers for more resources

The glycosyltransferase family 21 (GT21) includes both enzymes of eukaryotic and prokaryotic organisms. Many of the eukaryotic enzymes from animal, plant, and fungal origin have been characterized as uridine diphosphoglucose (UDP-Glc):ceramide glucosyltransferases (glucosylceramide synthases [Gcs], EC 2.4.1.80). As the acceptor molecule ceramide is not present in most bacteria, the enzymatic specificities and functions of the corresponding bacterial glycosyltransferases remain elusive. In this study, we investigated the homologous and heterologous expression of GT21 enzymes from Agrobacterium tumefaciens and Mesophizobium loti in A. tumefaciens, Escherichia coli, and the yeast Pichia pastoris. Glycolipid analyses of the transgenic organisms revealed that the bacterial glycosyltransferases are involved in the synthesis of mono-, di- and even tri-glycosylated glycolipids. As products resulting from their activity, we identified 1,2-diacyl-3-(O-beta-D-galacto-pyranosyl)-sn-glycerol, 1,2-diacyl-3-(O-beta-D-gluco-pyranosyl)-sn-glycerol as well as higher glycosylated lipids such as 1,2-diacyl-3-[O-beta-D-galacto-pyranosyl-(1 -> 6)O-beta-D-galacto-pyranosyl]-sn-glycerol, 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1--> 6)-O-beta-D-galacto-pyranosyl]-sn-glycerol, 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1 -> 6)-O-beta-D-gluco-pyranosyl]-sn-glycerol, and the deviatingly linked diglycosyldiacylglycerol 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1 -> 3)-O-beta-D-galacto-pyranosyl]-sn-glycerol. From a mixture of triglycosyldiacylglycerols, 1,2-diacyl-3-[O-beta-D-galacto-pyranosyl(1 > 6)-O-beta-D-galacto-pyranosyl-(1 -> 6)-O-beta-D-galacto-pyranosyl]-sn-glycerol could be separated in a pure form. In vitro enzyme assays showed that the glycosyltransferase from A. tumefaciens favours uridine diphosphogalactose (UDPGal) over UDP-Glc. In conclusion, the bacterial GT21 enzymes differ from the eukaryotic ceramide glucosyltransferases by the successive transfer of up to three galactosyl and glucosyl moieties to diacylglycerol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available