4.7 Article

Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers

Journal

PHYSICAL REVIEW E
Volume 72, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.036619

Keywords

-

Ask authors/readers for more resources

We consider Fabry-Perot cavity resonance in periodic stacks of anisotropic layers with misaligned in-plane anisotropy at the frequency close to a photonic band edge. We show that in-plane dielectric anisotropy can result in a dramatic increase in field intensity and group delay associated with the transmission resonance. The field enhancement turns out to be proportional to fourth degree of the number N of layers in the stack. By contrast, in common periodic stacks of isotropic layers, those effects are much weaker and proportional to N-2 Thus, the anisotropy allows one to drastically reduce the size of the resonance cavity with similar performance. The key characteristic of the periodic arrays with gigantic transmission resonance is that the dispersion curve omega(k) at the photonic band edge has the degenerate form Delta omega similar to(Delta k)(4), rather than the regular form Delta omega similar to(Delta k)(2). This can be realized in specially arranged stacks of misaligned anisotropic layers. The degenerate band-edge cavity resonance with similar outstanding properties can also be realized in a waveguide environment, as well as in a linear array of coupled multimode resonators, provided that certain symmetry conditions are in place.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available