4.8 Article

Changes in zinc speciation in field soil after contamination with zinc oxide

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 39, Issue 17, Pages 6616-6623

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es047962g

Keywords

-

Ask authors/readers for more resources

Recent studies on the speciation of Zn in contaminated soils confirmed the formation of Zn-layered double hydroxide (LDH) and Zn-phyllosilicate phases. However, no information on the kinetics of the formation of those phases under field conditions is currently available. In the present study, the transformation of Zn in a field soil artificially contaminated with ZnO containing filter dust from a brass foundry was monitored during 4 years using extended X-ray absorption fine structure (EXAFS) spectroscopy. Soil sections were studied by mu-X-ray fluorescence (mu-XRF) and mu-EXAFS spectroscopy. EXAFS spectra were analyzed by principal component analysis (PCA) and linear combination fitting (LCF). The results show that ZnO dissolved within 9 months and that half of the total Zn reprecipitated. The precipitate was mainly of the ZnLDH type (> 75%). Only a minor fraction (< 25%) may be of Zn-phyllosilicate type. The remaining Zn was adsorbed to soil organic and inorganic particles. No significant changes in Zn speciation occurred from 9 to 47 months after the contamination. Thermodynamic calculations show that both Zn-LDH and Zn-phyllosilicate may form in the presence of ZnO but that the formation of Zn-phyllosilicate would be thermodynamically favored. Thus, the dominance of Zn-LDH found by spectroscopy suggests that the formation of the Zn precipitates was not solely controlled by thermodynamics but also contained a kinetic component. The rate-limiting step could be the supply of Al and Si from soil minerals to the Zn-rich solutions around dissolving ZnO grains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available