4.6 Article

Soy protein reduces hepatic lipotoxicity in hyperinsulinemic obese Zucker fa/fa rats

Journal

JOURNAL OF LIPID RESEARCH
Volume 46, Issue 9, Pages 1823-1832

Publisher

ELSEVIER
DOI: 10.1194/jlr.M500067-JLR200

Keywords

steatosis; liver; liver X receptor-alpha; sterol-regulatory element binding protein-1

Ask authors/readers for more resources

Hepatic steatosis is commonly present during the development of insulin resistance, and it is a clear sign of lipotoxicity attributable in part to an accelerated lipogenesis. There is evidence that a soy protein diet prevents the overexpression of hepatic sterol- regulatory element binding protein-1 (SREBP-1), decreasing lipid accumulation. Therefore, the aim of the present work was to study whether a soy protein diet may prevent the development of fatty liver through the regulation of transcription factors involved in lipid metabolism in hyperinsulinemic and hyperleptinemic Zucker obese fa/fa rats. Serum and hepatic cholesterol and triglyceride levels, as well as VLDL-triglyceride and LDL-cholesterol, were significantly lower in rats fed soy protein than in rats fed a casein diet for 160 days. The reduction in hepatic cholesterol was associated with a low expression of liver X receptor-alpha and its target genes, 7-alpha hydroxylase and ABCA1. Soy protein also decreased the expression of SREBP-1 and several of its target genes, FAS, stearoyl-CoA desaturase-1, and Delta 5 and Delta 6 desaturases, decreasing lipogenesis even in the presence of hyperinsulinemia. Reduction in SREBP-1 was not associated with the presence of soy isoflavones. Finally, soy protein reduced SREBP-1 expression in adipocytes, preventing hypertrophy, which also helps prevent the development of hepatic lipotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available