4.4 Article

Exactly solvable model of quantum diffusion

Journal

JOURNAL OF STATISTICAL PHYSICS
Volume 121, Issue 3-4, Pages 463-496

Publisher

SPRINGER
DOI: 10.1007/s10955-005-7577-x

Keywords

quantum transport; environment-induced diffusion; quantum decoherence; quantum master equation; translational invariance; bloch theorem for density matrices; Liouvillian resonances

Ask authors/readers for more resources

We study the transport property of diffusion in a finite translationally invariant quantum subsystem described by a tight-binding Hamiltonian with a single energy band. The subsystem interacts with its environment by a coupling expressed in terms of correlation functions which are delta-correlated in space and time. For weak coupling, the time evolution of the subsystem density matrix is ruled by a quantum master equation of Lindblad type. Thanks to the invariance under spatial translations, we can apply the Bloch theorem to the subsystem density matrix and exactly diagonalize the time evolution superoperator to obtain the complete spectrum of its eigenvalues, which fully describe the relaxation to equilibrium. Above a critical coupling which is inversely proportional to the size of the subsystem, the spectrum at given wave number contains an isolated eigenvalue describing diffusion. The other eigenvalues rule the decay of the populations and quantum coherences with decay rates which are proportional to the intensity of the environmental noise. An analytical expression is obtained for the dispersion relation of diffusion. The diffusion coefficient is proportional to the square of the width of the energy band and inversely proportional to the intensity of the environmental noise because diffusion results from the perturbation of quantum tunneling by the environmental fluctuations in this model. Diffusion disappears below the critical coupling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available