4.4 Article

Modeling floodplain filtration for the improvement of river water quality

Journal

TRANSPORT IN POROUS MEDIA
Volume 60, Issue 3, Pages 319-337

Publisher

SPRINGER
DOI: 10.1007/s11242-004-6325-z

Keywords

floodplain filtration; organic matter removal; denitrification; mathematical modeling; competitive Michaelis-Menten model

Ask authors/readers for more resources

A mathematical model was developed to describe a treatment method of floodplain filtration for the improvement of river water quality. The process consists of spraying poor quality river water onto the river floodplains and thus allowing soil filtration to treat water before it gets back again into the main river stream. This technique can be readily employed in Korea because it exploits the characteristics of the climate and rivers in the country, as described in an experimental study of Chung et al. ( 2004). The model was analyzed by numerical methods and validated by comparing the simulated values with experimental data. A scenario analysis of the model was also performed in order to have a better understanding of the. oodplain filtration process. Our results show that the model was able to predict the reduction in organic matter and NO3- in river water through the. oodplain filtration. Furthermore, it was found that only a few decimeters of top soil profile were enough to degrade most of the organic matter under wider operational conditions than those reported in the literature. Also, it was found that significant infiltration of atmospheric oxygen took place near the soil surface. The N2O emission and the NO3- leaching increased with the increase in the influent NO3- concentration. However, the N2O emission due to. oodplain filtration was not expected to exceed 0.1 mL/m(2)-day.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available