4.7 Article

Discrimination of yeast genes involved in methionine and phosphate metabolism on the basis of upstream motifs

Ask authors/readers for more resources

Motivation: In yeast, methionine and phosphate metabolism are regulated by the complexes Met4p/Met28p/Cbf1p and Pho4p, respectively. The binding sites for these factors share a common core CACGTG. We evaluate our capability to discriminate phosphate- and methionine-responding genes on the basis of putative regulatory elements, despite the similarity between Met4p/Met28p/Cbf1p and Pho4p consensus. Results: We scanned upstream regions of methionine, phosphate and control genes with position-specific weight matrices for Pho4p, Met4p/Met28p/Cbf1p and Met31p/Met32p, and applied discriminant analysis to classify genes according to matrix matching scores. This analysis showed that matrix scores provided a good discrimination between phosphate, methionine and control genes. The optimal parameters have then been used to predict phosphate and methionine regulation at a genome scale. The genome-scale analysis predicts 37 genes as methionine-regulated and 40 as phosphate-regulated. We compare the predictive results with high throughput data and discuss the difference.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available