4.5 Article

The interaction of selected semiconducting biomaterials with platelet-rich plasma and whole blood

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 74A, Issue 3, Pages 325-337

Publisher

WILEY
DOI: 10.1002/jbm.a.30255

Keywords

semiconducting biomaterials; cyclic voltammetry; electrochemical impedance spectroscopy (EIS); open-circuit potential; platelet rich plasma (PRP)

Ask authors/readers for more resources

Copper and silicon are used as biomaterials in various forms. Silicon is a well-known semiconductor and has two distinct types (n-type and p-type), depending on the dopants used. The oxides (e.g., CuO and Cu2O) on the copper surface also behave as semiconductors. The electrochemical properties of these two selected semiconducting biomaterials were investigated by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and open-circuit potential (OCP) in an aerated Ringer's solution at 37 degrees C. Platelet-rich plasma (PRP) and whole blood from a healthy human donor were used to determine the degree of interaction with the selected semiconducting materials in vitro. Morphologies of adherent platelets and blood on these two biomaterials were examined by scanning electron microscopy (SEM). Experimental results indicated that the degree of interaction is a function of the electrochemical properties of these two biomaterials. Platelets and blood were found to react strongly with p-type biomaterials while little or no sign of interaction with n-type biomaterials was demonstrated. The difference in PRP and whole blood reactions between p-type and n-type semiconductors was quantified to be significant as p < 0.05. (c) 2005 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available