4.5 Article

Rice ZFP15 gene encoding for a novel C2H2-type zinc finger protein lacking DLN box, is regulated by spike development but not by abiotic stresses

Journal

MOLECULAR BIOLOGY REPORTS
Volume 32, Issue 3, Pages 177-183

Publisher

SPRINGER
DOI: 10.1007/s11033-005-2338-0

Keywords

cDNA cloning; chromosome location; spike development; ZFP15

Ask authors/readers for more resources

A novel C2H2-type zinc finger protein gene, ZFP15, was cloned from rice by RT-PCR approach. The ZFP15 gene encodes a protein of 144 amino acid residues with a predicted molecular mass of 15 kDa. The ZFP15 protein comprises two C2H2-type zinc finger domains, a putative nuclear localization signal (NLS) at its N-terminus but the DLN-box identified in all reported plant C2H2-type zinc finger proteins was not found. A homology search revealed that ZFP15 gene was localized within a cluster of C2H2-type zinc finger genes in BAC clone OJ1754_E06 mapped on chromosome 3. All three members in the cluster encoded proteins showed high identities in amino acids and might contribute to a co-regulation. The RT-PCR assay revealed that ZFP15 mRNA was not regulated by cold, salt, drought and ABA stresses, though CRT/DRE and ABRE elements were found in the promoter region of ZFP15 gene. The expression profiling also showed that ZFP15 mRNA was expressed with a lower level in leaves and roots, but not detected in stems. Besides, ZFP15 was shown to accumulate much more in flowering spike than in immature spike. Thus, ZFP15, as the first characterized C2H2-type zinc finger protein in rice, might play a regulatory role on rice spike development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available