4.6 Article

Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 52, Issue 9, Pages 1532-1540

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2005.851527

Keywords

adaptive neuro-fuzzy inference system (ANFIS); cerebral palsy (CP); electrical stimulation (ES)

Ask authors/readers for more resources

An adaptive neuro-fuzzy inference system (ANFIS) with a supervisory control system (SCS) was used to predict the occurrence of gait events using the electromyographic (EMG) activity of lower extremity muscles in the child with cerebral palsy (CP). This is anticipated to form the basis of a control algorithm for the application of electrical stimulation (ES) to leg or ankle muscles in an attempt to improve walking ability. Either surface or percutaneous intramuscular electrodes were used to record the muscle activity from the quadriceps muscles, with concurrent recording of the gait cycle performed using a VICON motion analysis system for validation of the ANFIS with SCS. Using one EMG signal and its derivative from each leg as its inputs, the ANFIS with SCS was able to predict all gait events in seven out of the eight children, with an average absolute time differential between the VICON recording and the ANFIS prediction of less than 30 ms. Overall accuracy in predicting gait events ranged from 98.6% to 95.3% (root mean-squared error between 0.7 and 1.5). Application of the ANFIS with the SCS to the prediction of gait events using EMG data collected two months after the initial data demonstrated comparable results, with no significant differences between gait event detection times. The accuracy rate and robustness of the ANFIS with SCS with two EMG signals suggests its applicability to ES control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available